首页 男生 女生 完本 排行 书单 专题 原创专区
汀兰水榭 > 科幻 > 学霸的黑科技系统 > 第192章 目标,数学年刊!

学霸的黑科技系统 第192章 目标,数学年刊!

作者:晨星LL 分类:科幻 更新时间:2021-07-23 21:32:22

这灵感一来,笔就停不下来了,甚至连肚子都不饿了。

全身已经被精神食粮充满的陆舟,只觉得浑身都是干劲,拿着那支笔,开始在纸上洋洋洒洒地写下了一行行算式。

【设有限群G且|G|=p1α1p2α2···piαi,其中pi为素数,αi是正整数。令p∈π(G),定义deg(p)=|{q∈π(G)|p~q)|

称deg(p)为顶点p的次数。再定义C(G)=……

……

时间一分一秒过去,文思泉涌的感觉却一刻也没有停下。

这种感觉和上次有所不同。

上次的灵感是借来的,但这次的灵感,却是他自己孕育的。

笔尖在纸上游走。

不知不觉中,已经写满了五张草稿纸。

将步骤和思路整理了下,陆舟揉了揉肚子,靠在椅子上,掏出了手机。

本以为没过多久,结果一看时间顿时惊了。

“握草,都五点了?!”

人是铁,饭是钢,一顿不吃饿得慌,更不要说他还没吃早饭了。

陆舟最终还是撑不下去了,趁着食堂还没有被清一色绿军装的学弟学妹们占领,赶紧去食堂吃了顿晚饭,回来继续埋头苦干。

时间到了六点半。

从外面上完课回来,史尚提着盒饭推门走进来,看见趴在桌子上奋笔疾书的陆舟,好奇地嚷嚷了声。

“肘子,你在干啥呢?研究生还有作业?”

正算到关键的地方,陆舟也不抬头,随口回道。

“写论文。”

这时候,黄光明和刘瑞两个也提着盒饭跟着进了门。

将书包扔在了桌子上,刘瑞拿出了专业课作业,黄光明则是好奇地走到了陆舟背后,往纸上看了两眼。

这一看不要紧。

看了之后,顿时懵逼了。

“握草,肘子,你写的东西,我怎么一个字都看不懂。”

听到小贱的声音,史尚也不吃饭了,好奇地走了过来。

“捧逼捧的夸张了啊小贱,咱现在又不是大一,都大三了,你看不懂过程,符号总能看懂吧……握草,我没认错,这玩意儿是群论吧……超纲了啊!”

正在写专业课作业的刘瑞,转着手中的笔,面对肘子的各种骚操作,他已经越来越淡定了:“也不算超纲吧,在专选课的跨学科选修里面,是有李群李代数……不过和我们应数没什么关系,除非你们打算转理论物理。”

理科转理科,那得多想不开。

为了兴趣没什么好说的,不是实在感兴趣,大家都是老老实实往钱途广大的工科转。

“惹不起惹不起。”黄光明摇着头撤退了。

“必须惹不起,要不搞个大新闻的就是你了。”拍着小贱的肩膀叹着气,史尚也一脸放弃治疗的表情撤退了。

陆舟:“……?”

……

罗马不是一天建成的,一套完善的理论不但需要灵感的迸发,更需要时间的积累。

连续几天,陆舟几乎都是白天泡在图书馆里,晚上回到寝室后继续钻研。

偶尔,他还要抽空回复下弗兰克教授的邮件,虽然那边暂时没有新的数据传来,但完善理论的工作同样需要计算。

每一天,陆舟都过得相当充实。

虽然在旁人看来无法理解,但他自己倒是乐在其中。

9月份的第二周,一个风和日丽的上午,坐在图书馆里的陆舟伸了个懒腰,看着面前洋洋洒洒的十多页纸,心中感慨一声。

“终于特么的搞定了!”

敏感枯竭的时候,所有一切的工作都是为灵感来时的那一瞬间做铺垫。而当他真正想通这个问题解法的时候,找到迷宫的出口,似乎就在他的眼前。

一切都是水到渠成。

此时此刻,陆舟的心情说不出的愉悦。

不只是因为解决了又一个数学难题,正是因为在解决这个数学难题时,让他对群论有了更为深刻的理解,并且在此基础上研究出了一套全新的数学方法。

而这一发现,甚至比解决数学猜想本身,更让他心情激动。

希尔伯特曾评价费马大定理是一只会下金蛋的鸡,并不是因为这只母鸡养活了一大批数学家,也不是因为这只母鸡给很多期刊提供了水论文的机会,而是因为很多新颖的数学方法,都是在对数论问题的研究中得出的。

比如受费马问题的启发,库默引入了理想数的概念,并发现了把一个循环域的数分解为理想素因子的唯一分解定理,这一定理今天已被狄德金和克朗奈克推广到任意代数域,在近代数论中占据中心地位,而且其意义已远远超出数论的范围而深入到代数的函数论的领域。

而陆舟在普林斯顿学术会议上的工作也是一样,应用拓扑学对筛法理论进行了补充,巧妙地解决了孪生素数猜想。

而原本筛法理论已经被陈老先生运用到了极致,数论界普遍认为想要解决哥德巴赫猜想的“1 1”形式,必须得寻求新的方法。

但现在看来,似乎出现了一些转机,筛法理论还有值得继续深挖的价值。

而这一点,就连曾经于95年,最先将拓扑学原理引入筛法理论的泽而贝克教授,都是没有预料到的。

这就是数论的价值。

陆舟在解决波利尼亚克猜想的时候,同样完成了这一工作,为这个猜想找到了一条独特的解决路径。

这种新的方法,被他成为“群论的整体结构研究法”,简称“群构法”。

利用群论的方法,从整体上出发研究无限性的问题,并将“K=1”形式推广到“k为无穷大自然数”,彻底证明“对所有自然数k,存在无穷多个素数对(p,p 2k)”这一命题。

描述起来可能就一两句,但想要将这个解法详细讲明白,可能得要几块大黑板。

花了整整一天的时间,将所有过程全部整理到了电脑上,转成了pdf格式之后。

看着屏幕中的完成品,陆舟最后检查了两遍,满意地点了点头。

“就写到这里吧。”

关于群构法的详细理论,其实还有很多东西可以写,甚至于全部总结出来,比他这篇证明过程本身还要长。

但那部分已经不是这篇论文的重点了。

到此为止,波利尼亚克猜想已经证明。

虽然看上去只是将孪生素数猜想推广到素数对间距无穷大的形式,但其中的困难,只有他这个证明者才知道了。

陆舟想了想,在论文的最后,补充了一行。

【……碍于篇幅原因,关于“群构法”的详细理论,我会在下一篇论文中做详细说明。】

重新转格式,压缩上传。

目标,《数学年刊》!

目录
设置
设置
阅读主题
字体风格
雅黑 宋体 楷书 卡通
字体风格
适中 偏大 超大
保存设置
恢复默认
手机
手机阅读
扫码获取链接,使用浏览器打开
书架同步,随时随地,手机阅读
收藏
换源
听书
听书
发声
男声 女生 逍遥 软萌
语速
适中 超快
音量
适中
开始播放
推荐
反馈
章节报错
当前章节
报错内容
提交
加入收藏 < 上一章 章节列表 下一章 > 错误举报